

NARAYANA ENGINEERING COLLEGE::GUDUR (AUTONOMOUS)

DEPARTMENT OF MECHANICAL ENGINEERING II YEARCOURSE STRUCTURE & SYLLABI

B.Tech.-II Year ISemester

S.No.	Course code	Title	L	Т	Р	Credits
1	23A03301	Thermodynamics	2	0	0	2
2	23A03302	Mechanics of Solids	3	0	0	3
3	23A03303	Material Science and Metallurgy	3	0	0	3
4	23A03304	Mechanics of Solids and Materials Science Lab	0	0	3	1.5
5	23A03305	Computer-Aided Machine Drawing	0	0	3	1.5

	<u> </u>	NARAYA	NA ENGI	NEERING	G COLLEG	E:GUDU	R	
Course code			THERMOD	YNAMICS	(23A03301)			R23
Semester	Н	ours / We	ek	Total	Credit		Max Mar	ks
	L	Т	Р	hrs	C	CIE	SEE	TOTAL
l	2	0	0		2	30	70	100
Pre-requisit	e:							
	liarize con			-	-		for conver	rsion of on
	to other.							
-	ain relations	-					-	
• Teacl	h the con	cept of	entropy f	or identi	fying the	disorder	and feasi	ibility of
thern	nodynamic	process.						
• Intro	duce the co	ncept of a	vailable en	ergy for n	naximum w	ork conv	ersion.	
Provi	de fundame	ental conc	epts of Rei	frigeration	and Psych	rometry.		
Course Out	comes: Afte	er success	ful comple	etion of tl	he course, 1	the studer	nt will be a	able to:
CO 1	Explain the	e importa	nce of ther	modynam	ic propertie	es related	to conversi	on of heat
	energy into	o work. (L	.3)					
CO 2	Apply the	Zeroeth a	nd First La	w of Ther	modynami	cs. (L3)		
CO 3	Understan	d Second	Law of Th	ermodyna	mics. (L2)			
CO 4	Analyze th	e Mollier	charts, T-S	S and h-s	diagrams, S	Steam calo	rimetry, Pl	hase
	Transform	ations(L4)					
CO 5			•	•••	ns and prop	· •	cesses of	
	psychrome	etrv and se	ensible and	latent hea	at loads. (L	5)		

					(CO-PO	Марр	oing						
		РО										PSO		
со	PO1	PO2	PO	PO	PO	РО	РО	РО	PO	PO	PO	PO	PSO	PSO
			3	4	5	6	7	8	9	10	11	12	1	2
CO1														
CO2														
CO3														
CO4														
CO5														
					1: Lov	w, 2-M	edium	, 3- Hi	gh					

COURSE CONTENT								
MODULE – 1 8H								
Introduction: Basic Concepts : System, boundary, Surrounding, control volume, Universe,								
Types of Systems, Macroscopic and Microscopic viewpoints, Concept of Continuum,								
Thermodynamic l	Equilibrium, State, Property, Process, Cycle – Reversibility	– Quasi static						
Process, Irreversit	ble Process, Causes of Irreversibility							
MODULE -2 7 H								

Energy in State and in Transition, Types, Work and Heat, Point and Path function.Zeroeth Law of Thermodynamics – PMM-I, Joule's Experiment – First law of Thermodynamics and applications. Limitations of the First Law – Enthalpy, Thermal Reservoir, Heat Engine, Heat pump, Parameters of performance.

MODULE-3

8 H

8 H

9 H

Second Law of Thermodynamics, Kelvin-Planck and Clausius Statements and their Equivalence / Corollaries, PMM-II, Carnot's principle, Carnot cycle and its specialties, Thermodynamic scale of Temperature, Clausius Inequality, Entropy, Principle of Entropy Increase – Energy Equation, Availability and Irreversibility – Thermodynamic Potentials, Gibbs and Helmholtz Functions, Maxwell Relations – Elementary Treatment of the Third Law of Thermodynamics.

MODULE-4

Pure Substances, P-V-T- surfaces, T-S and h-s diagrams, Mollier Charts, Phase Transformations – Triple point at critical state properties during change of phase, Dryness Fraction – Clausius – Clapeyron Equation Property tables. Mollier charts – Various Thermodynamic processes and energy Transfer – Steam Calorimetry.

At the end of the Module 4, students will be able to:

MODULE-5

Introduction to Refrigeration: working of Air, Vapourcompression, VCR system Components, COP Refrigerants. Introduction to Air Conditioning: Psychrometric properties & processes – characterization of sensible and latent heat loads – load concepts of SHF. Requirements of human comfort and concept of effective temperature- comfort chart – comfort air conditioning, and load calculations.

Total hours: 48 HOURS

Online Learning Resources:

• <u>https://www.edx.org/learn/thermodynamics</u>.

https://archive.nptel.ac.in/courses/112/106/112106310

• <u>https://www.youtube.com/watch?v=7NI5P4KqrAs</u>&t=1s

• https://kp.kiit.ac.in/pdf_files/02/Study-Material_3rdSemester_Winter_2021_Mechanical-Engg.-

_Thermal-Engineering-1_AbhijitSamant.pdf

https://www.coursera.org/learn/thermodynamics-intro

Text Book(s): 1. P.K.Nag, Engineering Thermodynamics, 5/e, Tata McGraw Hill, 2013.

2. Claus Borgnakke Richard E. Sonntag, Fundamentals of Thermodynamics, 7/e, Wiley, 2009.

Reference Books :

- 1. J.B. Jones, and R.E. Dugan, Engineering Thermodynamics, 1/e, Prentice Hall, 1995.
- 2. Y.A.Cengel&M.A.Boles ,Thermodynamics An Engineering Approach, 7/e, McGraw Hill, 2010.
- 3. P.Chattopadhyay, Engineering Thermodynamics, 1/e, Oxford University Press, 2011.
- 4. CP Arora, Refrigeration and Air-conditioning, 4/e, McGraw Hill, 2021

Courses of the		VARAYA						D 22
Course code			/IECHANICS		R23			
Semester		lours / Wee		Total	Credit		Max Mar	1
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
I	3	0	0		3	30	70	100
Pre-requisit								
Course Obje				•	-			
•	Understand		ourofbasic	estructural	memberss	ubjectedto	uniaxialan	ldbi
	axial loads							
•	Apply the	1				0	structural	
	members a		e parts un	der axial, s	hear and b	pending los	ads, mome	ent and
	torsional m							
•					•			s for norma
	shear, and	torsion st	resses and	to solve	deflection	problems	in prepar	ation for th
	design of s	such struct	ural comp	onents. St	udents are	able to an	nalyse bea	ms and dra
	correct and	l complete	shear and	bending m	oment diag	grams for	beams.	
•	Stude	ents attain a	deeper ur	nderstandir	ng of the lo	ads,stresse	es, and stra	ins
	acting	on a struc	ture and th	ne irrelatio	ns in the e	lastic beha	avior	
•	-	gn and anal						
	c		•		1	1		
Course Out	omes: Afte	er success	ful comple	etion of th	e course,	the stude	ent will be	able to:
			•					
CO 1	Learn al l	the method	ls to analv	ze beams.	columns.	frames for	normal .s	hear .and
	Torsion stu		•					
	such struct			1		1 1		U
CO 2	Apply the	-		w of Ther	modynami	cs (I 3)		
CO 2 CO 3	Understand					LS. (LJ)		
				-		N4	nime (D	1
CO 4	Analyze th			s and h-s c	hagrams, S	steam calo	orimetry, P	nase
	Transform	ations(L4)						
CO 5	Evaluate th	he COP of	refrigerati	ing system	s and prop	erties, pro	cesses of	
	psychrome	etry and se	nsible and	latent hea	t loads. (L	5)		
			C	O-PO Map	oing			

						CO-PO	Марр	oing						
						PC)						PS	50
со	PO1	PO2	РО	РО	РО	PO	РО	PO	PO	PO	PO	PO	PSO	PSO
			3	4	5	6	7	8	9	10	11	12	1	2
CO1														
CO2														
CO3														
CO4														
CO5														
	1: Low, 2-Medium, 3- High													

	COURSE CONTENT	
MODULE – 1		8H
SIMPLE STRES	SES & STRAINS : Elasticity and plasticity – Types of	stresses &
strains–Hooke's la	w – stress – strain diagram for mild steel – Working stress	 Factor of
safety – Lateral st	train, Poisson's ratio & volumetric strain – Bars of varyin	g section –
	Temperature stresses- Complex Stresses - Stresses on an inc	
	niaxial and biaxial stress conditions - Principal planes an	
	circle - Relation between elastic constants, Strain energy – F	
	mpact and shock loadings.	
Oradual, Suddell, I	inpact and shock loadings.	
MODULE -2		7 H
	AND BENDING MOMENT :Definition of beam – Types	
	force and bending moment $-$ S.F and B.M diagrams for	
	and overhanging beams subjected to point loads, u.d.l,	
	combination of these loads– Point of contra flexure– Relativ	
	of loading ata section of a beam.	JII Detween
S.F., D.M and rate (or loading at section of a beam.	
		0.11
MODULE-3	ESSES :Theory of simple bending, Derivation of bending	8 H
SHEAR STRESS	f simple beam sections. ES: Derivation of formula – Shear stress distribution across rectangular, circular, triangular, I and T sections.	oss various
MODULE-4		8 H
of curvature – Diffe Macaulay's method supported beams su area method – appl TORSION: Introd	F BEAMS : Bending into a circular arc – slope, deflection erential equation for the elastic line of a beam – Double inte ds – Determination of slope and deflection for cantilever ubjected to point loads, UDL and UVL. Mohr's theorem an ication to simple cases. uction-Derivation- Torsion of Circular shafts- Pure Shear-Trur shafts, Shafts in series, Shafts in parallel.	gration and and simply nd Moment
T		
MODULE-5		<u>9 H</u>
formula for longitu strains – changes ir	CK CYLINDERS: Thin seamless cylindrical shells – Dendinal and circumferential stresses – hoop, longitudinal and n dia, and volume of thin cylinders– Thin spherical shells. We me's equation – cylinders subjected to inside & outside provide stress.	

Total hours: 48 HOURS Online Learning Resources: https://onlinecourses.nptel.ac.in/noc19_ce18/preview. https://youtube/iY_ypychVNY?si=310htc4ksTQJ8Fv6. https://www.youtube.com/watch?v=WEy939Rkd_M&t=2s 10.1000 for the formed of the f

- <u>https://www.classcentral.com/course/swayam-strength-of-materials-iitm-184204</u>
- <u>https://www.coursera.org/learn/mechanics-1</u>
- <u>https://www.edx.org/learn/engineering/massachusetts-institute-of-</u> technology-mechanical-behavior-of-materials-part-1-linear-elasticbehavior
- <u>https://archive.nptel.ac.in/courses/112/107/112107146/</u>

TextBooks:

- 1. GHRyder, Strengthofmaterials, Palgrave Macmillan publishers India Ltd, 1961.
- 2. B.C.Punmia, Strengthofmaterials, 10/e, LakshmipublicationsPvt.Ltd, NewDelhi, 2018.

Reference Books :

- 1. Gere & Timoshenko, Mechanics of materials, 2/e, CBS publications, 2004.
- 2.U.C.Jindal, Strengthof Materials, 2/e, Pearson Education, 2017.
- 3. Timoshenko, Strengthof Materials Part–I&II, 3/e, CBSPublishers, 2004.
- 4. AndrewPytelandFerdinandL.Singer,StrengthofMaterials,4/e,Longman Pulications, 1990.
- 5. Popov, Mechanics of Solids, 2/e, New Pearson Education, 2015.

	N	IARAYA	ANA ENG	GINEERIN	G COLLEG	iE:GUDU	ĸ	
Course code	MATE	DIAL S	CIENCE	&METAL		73 & 03303)		R23
Semester		ours / We		Total hrs	Credit	23A03303)	Max Ma	rks
Semester	L		P	Totarms	C	CIE	SEE	TOTAL
I	3	0	0		3	30	70	100
Pre-requisite	:							
• • •	Understand phases in di Study the be application Able to und properties of Grasp the n metallurgy Comprehen advanced m	the crys ifferent a ehavior of in differ lerstand of ferrous nethods of dtheprop nethods	stalline str alloy syste of ferrous ent doma the effect s metals. of making pertiesanc	ructure of d ems. s and non fe ins of heat trea g of metal p lapplication	ifferent me errous meta atment, add owder sand	tal sand stu ls and alloy lition of all l application c,composite	ys and the oying elen ons of pow esandothe	ir ments on vder r
CO 1			•	structure o ystems.(L2)		metals and	study the	stability of
CO 2	Study the	e behavi	or of ferre	ous and nor nt domains	n-ferrous m	etals and a	lloys and	
CO 3	Understa	and the e		eat treatme		of alloyin	g element	s on
CO 4	Grasp the metallurg		ds of mak	ing of meta	al powders	and applica	ations of p	owder
CO 5	Compreh		propertie	s and appli	cations of c	eramic. co	mposites	and other

					(CO-PO	Mapp	oing						
		РО								PS	50			
со	PO1	PO2	РО	PO	PO	PO	РО	РО	PO	РО	PO	PO	PSO	PSO
			3	4	5	6	7	8	9	10	11	12	1	2
CO1														
CO2														
CO3														
CO4														
CO5														
					1: Lov	w, 2-M	edium	, 3- Hi	gh					

	COURSE CONTENT	
MODULE – 1		8H
SC, BCC, FCC& boundaries-detern alloying, types o electron compoun Equilibrium Dia Isomorphous allo miscibility gaps, o Transformations	Tals and Constitution of alloys : Crystallization of metals, Pac HCP-line density, plane density. Grain and grain boundaries, of nination of grain size. Imperfections, Slip and Twinning. f solid solutions, Hume Rothery's rules, intermediate alloy ds grams : Experimental methods of construction of equilibring y systems, equilibrium cooling and heating of alloys, Level eutectic systems, congruent melting intermediate phases, perito in the solid state – allotropy, eutectoid, peritectoid reaction een equilibrium diagrams and properties of alloys. Study of Cu-Ni and Fe-Fe3C.	effect of grain Necessity of y phases, and um diagrams, r rule, coring ectic reaction. s, phase rule,
	<u> </u>	
MODULE -2	nd alloys: Structure and properties of White Cast iron, Mallea	7 H
die steels. Non-fe	plain carbon steels, Low alloy steels, Hadfield manganese st rrous Metals and Alloys: Structure and properties of Copper a s alloys, Titanium and its alloys, Magnesium and its alloys, Su	and its alloys,
MODULE-3		8 H
normalizing,harden	of Steels: Effect of alloying elements on Fe-Fe3C syste ing, TTT diagrams, tempering, hardenability, surface - harde ment, Cryogenic treatment.	-
MODULE-4		
D. I. 15 / "		8 H
atomization- Gr Sintering - Metho powder metallurg	rgy : Basic processes- Methods of producing metal pow anulation-Reduction-Electrolytic Deposition. Compacting ods of manufacturing sintered parts. Secondary operations, A ical products. odule 4, students will be able to:	ders- milling methods –
atomization- Gr Sintering - Metho powder metallurg	anulation-Reduction-Electrolytic Deposition. Compacting ods of manufacturing sintered parts. Secondary operations, A ical products.	ders- milling methods –
atomization- Gr Sintering - Metho powder metallurg At the end of the Mo MODULE-5 Ceramic and Ad Classification of	anulation-Reduction-Electrolytic Deposition. Compacting ods of manufacturing sintered parts. Secondary operations, A ical products.	rders- milling methods – pplications of 9 H asive materials, mposites, fiber
atomization- Gr Sintering - Metho powder metallurg At the end of the Mo MODULE-5 Ceramic and Ad Classification of reinforced compose materials.	anulation-Reduction-Electrolytic Deposition. Compacting ods of manufacturing sintered parts. Secondary operations, A ical products. dule 4, students will be able to: vanced materials: Crystalline ceramics, glasses, cermets, abra composites, manufacturing methods, particle reinforced con sites, PMC, MMC, CMC and CCCs. Introduction to Nanomate Total hours:	rders- milling methods – pplications of 9 H asive materials, mposites, fiber erials and smart
atomization- Gr Sintering - Metho powder metallurg At the end of the Mo MODULE-5 Ceramic and Ad Classification of reinforced compose materials. Online Learning Reso • https://archive.npt • https://www.edx.o	anulation-Reduction-Electrolytic Deposition. Compacting ods of manufacturing sintered parts. Secondary operations, A ical products. dule 4, students will be able to: vanced materials: Crystalline ceramics, glasses, cermets, abra composites, manufacturing methods, particle reinforced con sites, PMC, MMC, CMC and CCCs. Introduction to Nanomate Total hours:	rders- milling methods – pplications of 9 H asive materials mposites, fiber erials and smar 48 HOURS

<u>https://www.youtube.com/watch?v=9Sf278j1GTU</u>
 <u>https://www.coursera.org/learn/fundamentals-of-materials-science</u>

https://www.coursera.org/learn/material-behavior

Text Book(s): 1. S.H.Avner, Introduction to Physical Metallurgy, 2/e, Tata McGraw-Hill, 1997.

2. Donald R.Askeland, Essentials of Materials science and Engineering, 4/e, CL Engineering publications, 2018.

Reference Books :

- 1. Dr.V.D.kodgire, Material Science and Metallurgy, 39/e, Everest Publishing House, 2017.
- 2. V.Raghavan, Material Science and Engineering, 5/e, Prentice Hall of India, 2004.

3. William D. Callister Jr, Materials Science and Engineering: An Introduction, 8/e, John Wiley and Sons, 2009.

4. George E.Dieter, Mechanical Metallurgy, 3/e, McGraw-Hill, 2013.

- 5. Yip-Wah Chung, Introduction to Material Science and Engineering, 2/e, CRC Press, 2022.
- 6. A V K Suryanarayana, Material Science and Metallurgy, B S Publications, 2014.
- 7. U. C. Jindal, Material Science and Metallurgy, 1/e, Pearson Publications, 2011.

NARAYANA ENGINEERING COLLEGE:GUDUR										
Lab code	LAE	LAB title: MECHANICS OF SOLIDS & MATERIAL SCIENCE LAB R23								
		(23A03304)								
Semester	Н	ours / We	ek	Total	Credit		Max Mar	⁻ ks		
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
II	0	0 0 3 32 1.5 30 70 100								
Dro roquisito:										

Pre-requisite:

Course Objectives: The students completing this course are expected to

• Evaluate the values of yield stress, ultimate stress and bending stress of the given specimen under tension test and bending test

• Conduct the torsion test to determine the modulus of rigidity of given specimen.

• Justify the Rockwell hardness test over with Brinell hardness and measure the hardness of the given specimen.

• Examine the stiffness of the open coil and closed coil spring and grade them.

• Analyze the microstructure and characteristics of ferrous and non ferrous alloy specimens.

Course Outcomes: After successful completion of the course, the student will be able to:

CO1	Understand the stress strain behavior of different materials(L2)
CO2	Evaluate the hardness of different materials(L4)
CO3	Explain the relation between elastic constants and hardness of materials. (L1)
CO4	Identify various microstructures of steels and cast irons. (L3)
CO5	Evaluate hardness of treated and untreated steels. (L4)

					(CO-PO	Man	ning						
СО							0	JIIIS					PS	50
	PO	PO	PO	PO	Р	PO.	PO	РО	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	0	6	7	8	9	10	11	12	1	2
					5									
CO1														
CO2														
CO3														
CO4														
CO5														
					1-Lov	v, 2-M	edium	, 3- H	igh					
				(COUR	SE CO	NTEN	Г						СО
NOTE: An	y 6 ex	perin	nents	from	each	section	n A ar	d B.						
A) MECH	ANIC	SOFS	OLII	DSLA	B:									
Task 1. To	Task 1 . Tensile test													
Task 2 Ber	nding t	test or	n a) Si	mply s	suppo	rted be	eam b)	Cant	ilever	beam				
Task 3. To	rsion t	est												

Task 4. . Hardness test a) Brinell's hardness test b) Rockwell hardness test c) Vickers hardness test
Task 5. Test on springs
Task 6. Impact test a) Charpy test b) Izod test
Task 7. Punch shear test
Task 8. Liquid penetration test
B) MATERIAL SCIENCELAB:
Task 1. Preparation and study of the Microstructure of pure metals.
Task 2. Preparation and study of the Microstructure of Mild steel, medium carbon steels, and High carbon steels
Task 3. Study of the Microstructures of Cast Irons.
Task 4. Study of the Microstructures of Non-Ferrous alloys.

Task 5. Study of the Microstructures of Heat treated steels.

Task 6. Hardenability of steels by Jominy End Quench Test.

Virtual Labs:

- 1.To investigate the principal stresses σa and σb at any given point of a structural element or machine component when it is in a state of plane stress. (https://virtuallabs.github.io/exp-rockwell-hardness-experiment-iiith/objective.html)
- 2. To find the impact resistance of mild steel and cast iron.(https://smnitk.vlabs.ac.in/exp/izod-impact-test).
- 3. To find the impact resistance of mild steel.(https://sm-nitk.vlabs.ac.in/exp/charpyimpact-test/index.html)
- 4. To find the Rockwell hardness number of mild steel, cast iron, brass, aluminum and spring steel etc. (<u>https://sm-nitk.vlabs.ac.in/exp/rockwell-hardness-test</u>)
- 5. To determine the indentation hardness of mild steel, brass, aluminum etc. using Vickers hardness testing machine. (https://sm-nitk.vlabs.ac.in/exp/vickers-hardnesstest

	NARAYANA ENGINEERING COLLEGE:GUDUR										
Lab code	LAB 1	title: con	/IPUTER-AI	DED MACH	INE DRAW	ING (23A03	3305)	R23			
Semester	Ho	ours / Wee	ek	Total	Credit		Max Mai	ŕks			
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
II	0	0	3	32	1.5	30 70 100					
Pre-requisite:											
Course Objectives: The students completing this course are expected to											
• Introduce conventional representations of material and machine components.											
• Train to use software for 2D and 3D modeling											
• Familiarize with thread profiles, riveted, welded and key joints.											
• Teach	n solid moo	leling of n	nachine pa	rts and the	eir sections						
.• Expla	in creation	n of 2D a	nd 3D asso	embly dra	wings and	Familiari	ze with lir	nits, fits and			
-	ces inmati			•	C						
Course Ou	itcomes: A	After succ	essful con	mpletion	of the cou	rse, the stu	udent will	be able to:			
CO1	CO1 Demonstrate the conventional representations of materials and machine components. (L3)										
CO2											
CO3 Create solid models and sectional views of machine components. (L6)											
CO4	Generate solid models of machine parts and assemble them. (L5)										
CO5	Translate	3D assem	blies into	2D drawin	ngs. (L6)						

					(CO-PO	Map	oing							
СО						Р	0						PS	PSO	
	PO	PO	PO	PO	Ρ	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	
	1	2	3	4	0	6	7	8	9	10	11	12	1	2	
					5										
CO1															
CO2															
CO3															
CO4															
CO5															
	•	•	•	•	1-Lov	v, 2-M	edium	i, 3- H	igh		•		•		
												~~			

COURSE CONTENT	СО
The following are to be done by any 2D software package	
Conventional representation of materials and components:	
Task 1 . Detachable joints: Drawing of thread profiles, hexagonal and square-headed bolts and nuts, bolted joint with washer and locknut, stud joint, screw joint and foundation bolts. Task 2 Riveted joints: Drawing of rivet, lap joint, butt joint with single strap, single riveted, double riveted double strap joints.	

Task 3. Welded joints: Lap joint and T joint with fillet, butt joint with conventions.

Task 4. Keys: Taper key, sunk taper key, round key, saddle key, feather key, woodruff key. **Task 5.** Couplings: rigid – Muff, flange; flexible – bushed pin-type flange coupling, universal coupling, Oldham's' coupling.

The following exercises are to be done by any 3D software package:

Task 1. Sectional views: Creating solid models of complex machine parts and sectional views

Task 2. Assembly drawings:(Any four of the following using solid model software) Lathe tool post, tool head of shaping machine, tail-stock, machine vice, gate valve, carburetor, piston, connecting rod, eccentric, screw jack, plumber block, axle bearing, pipe vice, clamping device, Geneva cam, universal coupling

Task 3. Production drawing: Representation of limits, fits and tolerances for mating parts. Use any four parts of above assembly drawings and prepare manufacturing drawing with dimensional and geometric tolerances.

Textbooks:

1 Machine Drawing byK.L.Narayana, P.Kannaiah and K.Venkat Reddy, New Age International Publishers, 3/e, 2014

2 Machine drawing by N.Sideshwar, P. Kannaiah, V.V.S.Sastry, TMH Publishers. 2014.

Reference Books:

1. Cecil Jensen, Jay Helsel and Donald D.Voisinet, Computer Aided Engineering Drawing, Tata McGraw-Hill, NY, 2000.

2. James Barclay, Brain Griffiths, Engineering Drawing for Manufacture, Kogan Page Science, 2003.

3. N.D.Bhatt, Machine Drawing, Charotar Publishers, 50/e, 2014.

Online Learning Resources:

•https://eeedocs.wordpress.com/wp-content/uploads/2014/02/machinedrawing.pdf

https://archive.nptel.ac.in/courses/112/105/112105294/

• https://www.edx.org/learn/engineering/dassault-systemes-solidworks-solidworks-

cadfundamentals?index=product&queryID=c90b35a82a6ef58b0d6f89679c63f6a1&positi

on=2&linked_from=autocomplete&c=autocomplete

https://www.youtube.com/watch?v=0bQkS3_3Fq4

NARAYANA ENGINEERING COLLEGE::GUDUR (AUTONOMOUS)

DEPARTMENT OF MECHANICAL ENGINEERING II YEARCOURSE STRUCTURE & SYLLABI

B.Tech.II Year II Semester

S.No.	Coursecode	Title	L	Т	Р	Credits
1	23A52402d	Industrial Management	2	0	0	2
2	23A03401T	Manufacturing processes	3	0	0	3
3	23A03402T	Fluid Mechanics & Hydraulic Machines	3	0	0	3
4	23A03403	Theory of Machines	3	0	0	3
5	23A03402P	Fluid Mechanics & Hydraulic Machines Lab	0	0	3	1.5
6	23A03401P	Manufacturing processes Lab	0	0	3	1.5
7	23A99401	Design Thinking &Innovation	1	0	2	2

	NARAYANA ENGINEERING COLLEGE:GUDUR											
Course code		INDU	JSTRIAL M	ANAGEME	NT (23A524	02d)		R23				
Semester	H	lours / Wee	k	Total	Credit		Max Mar	ks				
	L	Т	Р	hrs	С	CIE SEE TOTAL						
I	2	0	0		2	2 30 70 100						
Pre-requisite:												
Course Objectives: The students completing this course are expected to												
•Introduce the scope and role of industrial engineering and the techniques for optimal design												
of layouts												
 Illustrate 	•Illustrate how work study is used to improve productivity											
• Explain	TQM and	quality co	ntrol techr	niques								
• Introdu	ce financial	l managem	ent aspect	ts and								
• Discuss	human res	ource man	agement a	and value	analysis.							
Course Out	comes: Afte	er successi	ful compl	etion of th	ne course,	the studer	nt will be a	able to:				
CO 1	Learn abou	t how to de	sign the op	otimal layo	ut. (L1)							
CO 2	Demonstra	ate work st	udy metho	ods. (L3)								
CO 3	CO 3 Explain Quality Control techniques. (L2)											
CO 4	CO 4 Discuss the financial management aspects (L3)											
CO 5	Understan	d the huma	in resourc	e managei	ment methor	ods (L2)						

	CO-PO Mapping													
		РО											PSO	
со	PO1	PO2	РО	PO	PO	РО	РО	РО	PO	PO	PO	PO	PSO	PSO
			3	4	5	6	7	8	9	10	11	12	1	2
CO1														
CO2														
CO3														
CO4														
CO5														
1: Low, 2-Medium, 3- High														

COURSE CONTENT

MODULE – 18HINTRODUCTION: Definition of industrial engineering (I.E), development, applications,
role of an industrial engineer, quantitative tools of IE and productivity measurement. Concept
of management, importance, functions of management, scientific management, Taylor's
principles, Fayol's principles of management.

PLANTLAYOUT:Factors governing plant location, types of production layouts, advantages and disadvantages of process layout and product layout, applications, quantitative techniques for optimal design of layouts.

MODULE -2		7 H
WORK STUDY	: Importance, types of production, applications, work study,	method study
and time study, v	vork sampling, PMTS, micromotion study, rating techniques	s, MTM, work

MODULE-3		8 H
TATISTICAL	QUALITY CONTROL: Quality control, Queuing a	assurance and i
mportance, SQC,	attribute sampling inspection with single and double sampl	ing, Control char
-	X and S charts and their applications, simple numerical exa	-
	YMANAGEMENT : Elements of TQM – Continuous	
erodefectconcept	,qualitycircles,implementation,applications,ISOqualitysyste	ems.SixSigma–
efinition, basic c	oncepts	
MODULE-4	1	8 H
	ANACEMENT, Score and nature of financial manage	
	IANAGEMENT: Scope and nature of financial manage	
	ment of working capital, estimation of working capital requ	
	control, Capital budgeting – Nature of Investr	
InvestmentEvalu	ationcriteria-NPV,IRR,PI,PaybackPeriod,andARR,numeric	alproblems.
MODULE-5		9 H
	UDCEMANACEMENT: Concept of human recourse	-
	URCEMANAGEMENT: Concept of human resource	
U	ment and industrial relations, functions of person	U
	s importance and types, merit rating, quantitative method	ds, wage incentiv
plans, and types.		
	YSIS: Value engineering, implementation procedure, e	enterprise resour
planning and sup	ply chain management.	
	Total ho	urs: 48 HOURS
Online Learning Res	sources: g/learn/thermodynamics.	
	l.ac.in/courses/112/106/112106310	
	be.com/watch?v=7NI5P4KqrAs&t=1s	
	in/pdf_files/02/Study-Material_3rdSemester_Winter_2021_Me	chanical-Engg
	ing-1_AbhijitSamant.pdf	
-	era.org/learn/thermodynamics-intro	
Text Book(s):		
	ustrialEngineeringandManagement,DhanpatRaiPublications(P)Lt	
	ng,IndustrialEngineeringandProductionManagement,S.Chand &C	CompanyLtd.New
Delhi		
Reference Books :		
1 Bhattacharva DK	K, Industrial Management, S.Chand, publishers.	
1. Dhatacha ja D1	rations Management, 3/e, McGraw Hill Publishers.	
2. I.G. Monks. Oper	Sharma, N.K. Agarwal, Industrial Engineering and Management Science, Kh	annaPublishers.
-		
3. T.R.Banga,S.C.S	ll. Principles of Management, McGraw Hill Publishers.	
 T.R.Banga,S.C.S Koontz O'Donne 	ell, Principles of Management, McGraw Hill Publishers. stical Quality Control, Khanna Publishers.	
 T.R.Banga,S.C.S Koontz O'Donne R.C.Gupta, Statistical Statistics 	ell, Principles of Management, McGraw Hill Publishers. stical Quality Control, Khanna Publishers. strial Engineering and Management, Cengage India Private Limited	

		NARAYA		NEERING	G COLLEG	E:GUDU	R					
Course code		MAN	UFACTURI	NG PROCES	SSES (23A03	401T)		R23				
Semester	ŀ	lours / Wee	ek	Total	Credit		Max Ma	irks				
	L	Т	Р	hrs	С	CIE SEE TOTA						
I	3	0	0		3	3 30 70 100						
Pre-requisit	e:											
 Class weld Knorollin Unde Kno Course Out 	w the worki sify the w ing defects w the natu g mill and erstand the w about the comes: Aft	ing princip elding pro ire of plas types, extr principles e Additive er success	le of diffe cesses, w tic deforr usion pro of forging manufact ful comp	rent metal vorking of nation, co cesses. g, tools and uring letion of t	casting pro- different ld and hot l dies, work he course,	ocesses an types of working king of for the stude	welding process, rging proc nt will be	working of a esses.				
CO 1	Design the	patterns ar	nd core bo	xes for met	al casting p	rocesses. (I	_6)					
CO 2	Understan	d the diffe	rent weld	ing proces	ses. (L2)							
CO 3	Demonstra	te the diffe	rent types	of bulk for	ming proces	sses. (L3)						
CO 4	Understan	d sheet met	al forming	g processes	(L2)							
CO 5	Learn abo	ut the diffe	erent type	s of additiv	ve manufac	turing pro	cesses. (L	2)				

	CO-PO Mapping													
	PO PSO											50		
со	PO1	PO2	РО	PO	PO	PO	РО	РО	PO	PO	PO	PO	PSO	PSO
			3	4	5	6	7	8	9	10	11	12	1	2
CO1														
CO2														
CO3														
CO4														
CO5														
	1: Low, 2-Medium, 3- High													

	COURSE CONTENT									
MODULE – 1		8H								
Casting: Steps involved in making a casting – Advantage of casting and its applications.										
	tern making – Types of patterns – Materials used for pa	· •								
allowances and their construction, Molding, different types of cores, Principles of Gating,										
Risers, casting	design considerations .Methods of melting and types	of furnaces,								
Solidification of	castings and casting defects- causes and remedies. Basic	principles and								
applications of sp	ecial casting processes - Centrifugal casting, Die casting, Inve	stment casting								
and shell molding										
MODULE -2		7 H								
Welding: Classification of welding processes, types of welded joints and their characteristics,										

Gas welding, Different types of flames and uses, Oxy - Acetylene Gas cutting. Basic principles of Arc welding, power characteristics, Manual metal arc welding, submerged arc welding, TIG & MIG welding. Electro-slag welding. Resistance welding, Friction welding, Friction stir welding, Forge welding, Explosive welding; Thermit welding, Plasma Arc welding, Laser welding, electron beam welding, Soldering &Brazing. Heat affected zones in welding; pre & post heating, welding defects -causes and remedies. **MODULE-3** 8 H **Bulk Forming:** Plastic deformation in metals and alloys-recovery, recrystallization and grain growth. Hot working and Cold working-Strain hardening and Annealing. Bulk forming processes: Forging-Types of Forging, forging defects and remedies; Rolling – fundamentals, types of rolling mills and products, Forces in rollingand power requirements. Extrusion and its characteristics. Types of extrusion, Impact extrusion, Hydrostatic extrusion; Wire drawing and Tube drawing. **MODULE-4** 8 H Sheetmetalforming-Blankingandpiercing, Forcesandpowerrequirementintheseoperations, Deep drawing, Stretch forming, Bending, Spring back and its remedies, Coining, Spinning, Types of presses and press tools. High energy rate forming processes: Principles of explosive forming, electromagnetic forming, Electro hydraulic forming, rubber pad forming, advantages and limitations. **MODULE-5** 9 H Additive manufacturing - Steps in Additive Manufacturing (AM), Classification of AM processes, Advantages of AM, and types of materials for AM, VAT photo polymerization AM Processes, Extrusion - Based AM Processes, Powder Bed Fusion AM Processes, Direct Energy Deposition AM Processes, Post Processing of AM Parts, Applications Total hours: **48 HOURS Online Learning Resources:** • https://www.edx.org/learn/thermodynamics. https://archive.nptel.ac.in/courses/112/106/112106310 • https://www.youtube.com/watch?v=7NI5P4KgrAs&t=1s • https://kp.kiit.ac.in/pdf files/02/Study-Material 3rdSemester Winter 2021 Mechanical-Engg.-Thermal-Engineering-1 AbhijitSamant.pdf https://www.coursera.org/learn/thermodynamics-intro Text Book(s): 1. Kalpakjain S and Steven R Schmid, Manufacturing Processes for Engineering Materials, 5/e, Pearson Publications, 2007. 2. P.N. Rao, Manufacturing Technology -Vol I, 5/e, McGraw Hill Education, 2018. Reference Books: 1.A.Ghosh&A.K.Malik, Manufacturing Science, East West Press Pvt. Ltd, 2010. 2. Lindberg and Roy, Processes and materials of manufacture, 4/e, Prentice Hall India Learning Private Limited, 1990. 3. R.K. Jain, Production Technology, Khanna Publishers, 2022. 4. Sharma P.C., A Text book of Production Technology, 8/e, S Chand Publishing, 2014. 5. H.S. Shaun, Manufacturing Processes, 1/e, Pearson Publishers, 2012. 6. WAJ Chapman, Workshop Technology, 5/e, CBS Publishers&DistributorsPvt.Ltd, 2001. 7. Hindustan Machine Tools, Production Technology, Tata McGraw Hill Publishers, 2017. 8. Ian Gibson, David W Rosen, Brent Stucker., Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, 2/e, Springer, 2015

	1	VARAYAI	NA ENGI	NEERING	COLLEG	E:GUDU	R			
Course code	FI	UIDMECH	ANICS & H	YDRAULIC	MACHINES	(23A03402	:T)	R23		
Semester	Н	ours / Wee	ek	Total	Credit	edit N		Max Marks		
	L	Т	Р	hrs	С	SEE	TOTAL			
	3	0	0		3 30 70					
Pre-requisit	e:									
Course Obje	ectives: The	students of	completing	g this cour	se are expe	ected to				
•Understan	d the prope	rties of flu	ids, mano	metry, hyd	lrostatic					
Forces acti	ng on differ	ent surfac	es							
•Understan	d the kinem	natic and d	ynamic be	ehavior th	rough varie	ous laws o	f fluids lil	ke continuity		
Euler's, Be	rnoulli's eq	uations, er	nergy and	momentui	n equation	s.		-		
•Understan	d the theor	y of bound	dary layer	, working	and perfor	rmance ch	aracteristi	cs of various		
hydraulic n	nachines lik	e pumps a	nd turbine	s.	-					
Course Out	comes : Afte	er success	ful compl	etion of th	ne course,	the stude	nt will be	able to:		
CO 1	Understan	d the basic	concepts	of fluid p	roperties	(L2)				
CO 2	Estimate th	ne mechan	ics of flui	ds in static	and dyna	mic condit	tions (L5)		
CO 3	Apply the									
CO 4	Estimate th	ne hydrody	ynamic for	rces of jet	on vanes i	n different	positions.	. (L5)		
CO 5	Understand and turbing		ing Princi	ples and p	erformanc	e evaluatio	on of hydra	aulic pump		

	CO-PO Mapping													
	РО												PS	60
со	PO1	PO2	РО	PO	РО	РО	РО	PO	PO	РО	PO	PO	PSO	PSO
			3	4	5	6	7	8	9	10	11	12	1	2
CO1														
CO2														
CO3														
CO4														
CO5														
	1: Low, 2-Medium, 3- High													

	COURSE CONTENT								
MODULE – 1		8H							
Fluid statics: Dimensions and units: physical properties of fluids - specific gravity, viscosity									
and its significar	and its significance, surface tension, capillarity, vapor pressure. Atmospheric, gauge and								
vacuum pressure,	vacuum pressure, Measurement of pressure – Manometers - Piezometer, U-tube, inverted and								
differential manor	meters. Pascal's & hydrostatic laws.								
Buoyancy and	floatation: Meta center, stability of floating body. Subm	erged bodies.							
Calculation of me	ta center height. Stability analysis and applications.	-							
MODULE -2		7 H							
Fluid kinematics:Introduction, flowtypes.Equation of continuity for one dimensional flow,									

circulation and vorticity, Stream line, path line and streak lines and stream tube. Stream function and velocity potential function, differences and relation between them. Condition for irrotational flow, flow net, source and sink, doublet and vortex flow.

Fluid dynamics: surface and body forces –Euler's and Bernoulli's equations for flow along a streamline, momentum equation and its applications, force on pipe bend.

Closedconduit flow: Reynold's experiment- Darcy Weisbach equation- Minor losses in pipes- pipesinseriesandpipesinparallel-totalenergyline-hydraulicgradientline.

MODULE-38 HBoundary Layer Theory: Introduction, momentum integral equation, displacement,
momentum and energy thickness, separation of boundary layer, control of flow separation,
Stream lined body, Bluff body and its applications, basic concepts of velocity profiles.Dimensional Analysis: Dimensions and Units, Dimensional Homogeneity, Non
dimensionalization of equations, Method of repeating variables and Buckingham Pi Theorem

MODULE-4

MODULE-5

8 H

Basics of turbo machinery: hydrodynamic force of jets on stationary and moving flat, inclined, and curved vanes ,jet striking centrally and at tip, velocity diagrams, work done and efficiency, flow Over radial vanes.

Hydraulic Turbines: classification of turbines, impulse and reaction turbines, Pelton wheel, Francis turbine and Kaplan turbine-working proportions, work done, efficiencies, hydraulic design – draft tube-theory-functions and efficiency.

At the end of the Module 4, students will be able to:

9 H

Performance of hydraulic turbines: Geometric similarity, Unit and specific quantities, characteristic curves, governing of turbines, selection of type of turbine, cavitation, surge tank, water hammer. Hydraulic systems- hydraulic ram, hydraulic lift, hydraulic coupling. Fluidics – amplifiers, sensors and oscillators. Advantages, limitations and applications.

Centrifugal pumps: classification, working, work done – manometric head- losses and efficiencies-specific speed- pumps in series and parallel-performance characteristic curves, cavitation & NPSH.

Reciprocatingpumps: Working, Discharge, slip, indicator diagrams.

Total hours: 48 HOURS

Online Learning Resources:

https://archive.nptel.ac.in/courses/112/105/112105206/

- https://archive.nptel.ac.in/courses/112/104/112104118/
- https://www.edx.org/learn/fluid-mechanics
- <u>https://onlinecourses.nptel.ac.in/noc20_ce30/previewnptel.ac.in</u>

• <u>www.coursera.org/learn/fluid-powerera</u>

Text Book(s): 1. Y.A.Cengel, J.M.Cimbala, Fluid Mechanics, Fundamentalsand Applications, 6/e, McGraw Hill Publications, 2019.

2. Dixon, Fluid Mechanics and Thermodynamics of Turbomachinery, 7/e, Elsevier Publishers, 2014.

Reference Books :

1. P N Modi and S M Seth, Hydraulics & Fluid Mechanics including Hydraulics Machines, Standard Book House, 2017.

2. RKBansal, FluidMechanicsandHydraulicMachines, 10/e,LaxmiPublications(P)Ltd, 2019.

3. Rajput, FluidMechanicsandHydraulicMachines, S Chand & Company, 2016.

4. D.S.Kumar, Fluid Mechanics and Fluid Power Engineering, S K Kataria & Sons, 2013.

5. D.RamaDurgaiah, FluidMechanicsandMachinery, 1/e, NewAgeInternational, 2002.

		VARAYA	NA ENGI	NEERING	COLLEG	E:GUDU	R						
Course code		т	HEORY OF	MACHINES	6 (23A0340	3)		R23					
Semester	F	lours / Wee	ek	Total	Credit		Max Mar	Max Marks					
	L	Т	Р	hrs	С	CIE	SEE	TOTAL					
	3	0	0		3	30	30 70 100						
Pre-requisite:													
Course Obj	ectives: The	students of	completing	g this cour	se are expe	ected to							
• Intro	oduce vario	us basic m	echanisms	and their	application	ns.							
• Exp	lain importa	ance of deg	gree of free	edom.									
• Fam	iliarize velo	ocity and a	cceleration	n in mech	anisms.								
	cribe the ca	•											
• Exp	lain the imp	ortance of	gyroscop	ic couples									
-	oduce the ed			-		edom syst	em.						
	comes: Afte	-		-	-			able to:					
CO 1	Understan	d different	mechanis	ms and th	eir inversio	ons. (L2)							
CO 2	Calculate (L4)	velocity ar	nd accelera	tion of di	fferent link	s in a mec	hanism.						
CO 3	Apply the	effects of	gyroscopia	c couple in	n ships, aei	o planes a	nd road ve	hicles. (L3)					
CO 4	Evaluate u	inbalance	mass in rot	tating mac	chines. (L5)							
CO 5	Analyze fr	ee and for	ced vibrat	ions of sir	gle degree	freedom	systems. (L	<u>A)</u>					

					(CO-PO	Марр	oing						
	РО												PSO	
со	PO1	PO2	PO	PO	PO	РО	PO	PO	PO	РО	PO	РО	PSO	PSO
			3	4	5	6	7	8	9	10	11	12	1	2
CO1														
CO2														
CO3														
CO4														
CO5														
	1: Low, 2-Medium, 3- High													

	COURSE CONTENT	
MODULE – 1		8H
	isms: Classification of mechanisms – Basic kinematic	
definitions – Deg	ree of freedom, mobility - Grashof's law, kinematic inversion	ons of four bar
chain and slider c	rank chains- Limit positions – Mechanical advantage- Trans	mission angle-
Description of	some common mechanisms- Quick return mechanism,	straight line
mechanisms – Un	iversal Joint – Rocker mechanisms.	-
MODULE -2		7 H

Plane and motion analysis: Displacement, velocity and acceleration analysis of simple mechanisms, graphical velocity analysis using instantaneous centers, velocity and

	le mechanisms
 slider crank mechanism dynamics – Coincident points – Coriolis c acceleration. 	component of
	
MODULE-3	8 H
Gyroscope: Principle of gyroscope, gyroscopic effect in an aeroplane, ship wheeler, simple problems	o, car and two
Gear Profile: Involute and cycloidal gear profiles, gear parameters, fundamental	low of gooring
and conjugate action, spur gear contact ratio and interference/undercutting –	
worm, rack & pinion gears, epicyclic and regular gear train kinematics.	nencai, bevei,
worm, rack & pinion gears, epicyche and regular gear train kinematics.	
MODULE-4	8 H
Balancing of Rotating masses: Need for balancing, balancing of single mas	
Cams: Classification of cams and followers- Terminology and definitions – diagrams –Uniform velocity, parabolic, simple harmonic and cycloidal motions of follower motions- specified contour cams- circular and tangent cams –press undercutting.	s – derivatives
MODULE-5	9 H
Vibrations: Introduction, degree of freedom, types of vibrations, free national	ural vibrations,
 Newton method and energy method for single degree of freedom. Damped vidamped, critically damped; and over damped systems, forced vibrations widamping in single degree of freedom; Vibration isolation and transmissibility. Turning Moment Diagrams and Flywheels: Turning moment diagrams for steengine and Multi Cylinder Engine. Crank effort – coefficient of fluctuation of speed – Fly Wheel and their design, fly wheels for pro- 	brations- under th and without eam engine, I.C ion of energy,
Newton method and energy method for single degree of freedom. Damped vi damped, critically damped; and over damped systems, forced vibrations wi damping in single degree of freedom; Vibration isolation and transmissibility. Turning Moment Diagrams and Flywheels: Turning moment diagrams for ste engine and Multi Cylinder Engine. Crank effort – coefficient of fluctuat	brations- under th and without eam engine, I.C ion of energy, punching press.
Newton method and energy method for single degree of freedom. Damped vi damped, critically damped; and over damped systems, forced vibrations wi damping in single degree of freedom; Vibration isolation and transmissibility. Turning Moment Diagrams and Flywheels: Turning moment diagrams for ste engine and Multi Cylinder Engine. Crank effort – coefficient of fluctuat coefficient of fluctuation of speed – Fly Wheel and their design, fly wheels for p	brations- under th and without eam engine, I.C ion of energy, punching press.
Newton method and energy method for single degree of freedom. Damped vi damped, critically damped; and over damped systems, forced vibrations wi damping in single degree of freedom; Vibration isolation and transmissibility. Turning Moment Diagrams and Flywheels: Turning moment diagrams for ste engine and Multi Cylinder Engine. Crank effort – coefficient of fluctuat coefficient of fluctuation of speed – Fly Wheel and their design, fly wheels for p	brations- under th and without eam engine, I.C ion of energy, punching press.
Newton method and energy method for single degree of freedom. Damped vi damped, critically damped; and over damped systems, forced vibrations wi damping in single degree of freedom; Vibration isolation and transmissibility. Turning Moment Diagrams and Flywheels: Turning moment diagrams for ste engine and Multi Cylinder Engine. Crank effort – coefficient of fluctuat coefficient of fluctuation of speed – Fly Wheel and their design, fly wheels for p Total hours: Text Book(s): 1. S.S.Rattan, Theory of Machines, 4/e, Tata Mc-Graw Hill, 2014.	brations- under th and without eam engine, I.C ion of energy, punching press.

		NARA	YANA ENG	INEERING		GUDUR:							
Lab code	LAB	title: FLL	JID MECHA	NICS & HY	DRAULIC M	ACHINERY	LAB	R23					
				23A03402F	P)								
Semester	He	ours / Wee	ek	Total	Credit		Max Mai	⁻ ks					
	L	Т	Р	hrs	С	CIE	SEE	TOTAL					
II	0												
Pre-requis	Pre-requisite:												
various flo	w measuri	ng equipm	nent and hy	ydraulic tu	rbines and	pumps.		h methods of be able to:					
CO1	Demonst	rate the de	vices used	for measure	uring flow	(L3)							
CO2	Compute	major los	ses in pipe	es. (L5)									
CO3	Illustrate	the operat	ting param	eters of tu	rbines (L	2)							
CO4	Explain the working of different types of pumps. (L2)												
CO5	Explain t	he devices	s used for 1	measuring	flow (L2)								

CO-PO Mapping														
СО						Р							PS	0
	РО	PO	PO	РО	Ρ	PO	РО	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	0 5	6	7	8	9	10	11	12	1	2
CO1					5									
CO2														
CO3														
CO4														
CO5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6														
1-Low, 2-Medium, 3- High														
COURSE CONTENT												СО		
Task 1. In	npact o	of jets	on Va	nnes.										
Task 2 Peri	forma	nce Te	est on	Pelton	Whe	el.								
Task 3. Per	forma	anceTe	estonF	Francis	Turb	oine.								
Task 4. Per	forma	anceTe	estonk	Kaplan	Turb	ine.								
Task 5. Per	forma	nceTe	estonS	ingle	Stage	Centr	ifugal	Pump).					
Task 6. Per	forma	nceTe	estonN	/ultiS	tageC	entrifu	igal P	ump.						
Task 7. Per	forma	nceTe	estonF	Recipro	ocatin	g Pun	īp	_						
Task 8. CalibrationofVenturimeter.														
Task 9. Calibration of Orificemeter.														
Task 10. D	eterm	inatio	noffrie	ctionfa	ctorf	or agiv	venpip	eline.						
Task 11. Determinationoflossofheadduetosuddencontractionina pipeline.														

Task 12. Turbine flowmeter.

Virtual Labs:

- 1. To study different patterns of a flow through a pipe and correlate them with the Reynolds number of the flow. (https://me.iitp.ac.in/Virtual-FluidLaboratory/reynolds/introduction.html)
- 2. To calculate Total Energy at different points of venture meter. (<u>https://me.iitp.ac.in/Virtual-Fluid-</u> <u>Laboratory/bernoulli/introduction.html</u>).
- To calculate the flow (or point) velocity at center of the given tube using different flow rates. (https://me.iitp.ac.in/Virtual-FluidLaboratory/pitot/introduction.html)
- 4. To determine the hydrostatic force on a plane surface under partial submerge and full submerge condition. (https://me.iitp.ac.in/Virtual-FluidLaboratory/cop/introduction.html).
- 5. To determine the discharge coefficient of a triangular notch. (<u>https://me.iitp.ac.in/Virtual-Fluid-</u> <u>Laboratory/notch/introduction.html</u>)
- 6. To determine the coefficient of impact of jet on vanes. (https://fmnitk.vlabs.ac.in/exp/impact-of-jet).
- 7. To determine friction in pipes. (https://fm-nitk.vlabs.ac.in/exp/friction-inpipes/index.html).

		NARA	YANA ENG	SINEERING	COLLEGE	:GUDUR						
Lab code	LAI	3 title: N	IANUFACTU	JRING PRO	CESSES LAE	3 (23A0340)1P)	R23				
Semester	He	ours / We	ek	Total	Credit		Max Mai	rks				
	L	Т	Р	hrs	С	CIE	SEE	TOTAL				
II	0	0	3	32	1.5	30	70	100				
Pre-requis	Pre-requisite:											
Course C	Course Objectives: Acquire practical knowledge on Metal Casting, Welding, Press											
Working a	nd Process	ing of Pla	stics.									
Course Ou	itcomes: A	After succ	cessful co	mpletion	of the cou	rse, the st	udent will	be able to:				
CO1	Make mo	oulds for s	and casting	g. (L2)								
CO2	Fabricate	different	types of c	componen	ts using va	arious mai	nufacturing	g techniques.				
	(L5)											
CO3	Adapt un	conventio	nal manuf	acturing n	nethods. (L	.3)						
CO4	Develop Different Weld joints. (L6)											
CO5												

CO-PO Mapping														
СО		1	1	1			0	1	I	I	I	1	-	60
	PO	PO	PO	PO	P	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	0 5	6	7	8	9	10	11	12	1	2
CO1														
CO2														
CO3														
CO4														
CO5														
1-Low, 2-Medium, 3- High														
COURSE CONTENT											со			
Task 1. D	•			•	-									
i. Single p				-	1	ern.								
Task 2 Sa	and p	roper	ties t	esting	5									
i. Sieve a	nalys	is (dr	y sar	d) ii.	Clay	y cont	ent te	est iii	. Moi	isture	cont	ent te	st	
iv. Strengt	th tes	t(Cor	npres	ssion	test a	& She	ear te	st) v.	Perr	neabi	lity t	est		
Task 3. N	Iould	l prep	arati	on										
i. Straight	t pipe	e ii. B	ent p	ipe ii	i. Du	imble	iv. C	Bear b	olank					
Task 4. Gas cutting and welding														
Task 5. Manual metal arc welding														
i. Lap) join	t ii. l	Butt j	oint										
Task 6. In	njecti	on M	loldir	ng										

Task 7. Blow Molding

Task 8. Simple models using sheet metal operations

Task 9. Study of deep drawing and extrusion operations

Task 10. To make weldments using TIG/MIG welding

Task 11. To weld using Spot welding machine

Task 12. To join using Brazing and Soldering

Task 13. To make simple parts on a 3D printing machine

Task 14. Demonstration of metal casting.

Virtual Labs:

1. To study and observe various stages of casting through demonstration of casting process. (https://virtual-labs.github.io/exp-sand-casting-processdei/theory.html)

- To weld and cut metals using an oxyacetylene welding setup. (https://virtuallabs.github.io/exp-gas-cutting-processes-iitkgp/index.html).
- 3. To simulate Fused deposition modelling process (FDM) (https://3dpdei.vlabs.ac.in/exp/simulation-modelling-process)
- 4. https://altair.com/inspire-mold/
- 5. https://virtual-labs.github.io/exp-simulation-cartesian-system-dei/theory.htm

	1	VARAYA	NA ENGI	NEERING	COLLEG	E:GUDUF	२				
Course code		DESIG		6 & INNOV	ATION (23A	99401)		R23			
Semester	Hours / Week			Total	Credit		Max Mai	rks			
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
I	1	0	2		2	30	70	100			
Pre-requisite:											
Course Ob	Course Objectives: The objective of this course is to familiarize students with design thinking										
process as	process as a tool for breakthrough innovation. It aims to equip students with design thinking										
skills and	ignite the r	ninds to ci	eate innov	vative idea	s, develop	solutions f	for real-tir	ne problems.			
Course Outo	omes: Afte	er success	ful compl	etion of th	ne course,	the studen	nt will be	able to:			
CO 1	Define the	concepts	related to	design thir	nking. (L1,	L2)					
CO 2	Explain the	e fundame	ntals of D	esign Thin	king and i	nnovation	(L1,L2)				
CO 3	Apply the	design thi	nking tech	niques for	solving p	oblems in	various se	ectors. (L3)			
CO 4	Analyse to	work in a	multidisc	iplinary er	nvironmen	t (L4)					
	-			-							
CO 5	Evaluate the value of creativity (L5)										
CO6	Formulate	specific p	roblem sta	itements of	f real time	issues(L3,	L6)				

CO-PO Mapping														
		PO										PSO		
со	PO1	PO2	РО	PO	РО	РО	РО	РО	РО	PO	PO	PO	PSO	PSO
			3	4	5	6	7	8	9	10	11	12	1	2
CO1														
CO2														
CO3														
CO4														
CO5														
1: Low, 2-Medium, 3- High														

COURSE CONTENT				
MODULE – 1		8H		
Introduction to l	Design Thinking			
Introduction to e	lements and principles of Design, basics of design-dot, line,	shape, form as		
fundamental desig	gn components. Principles of design. Introduction to design t	hinking, history		
of Design Thinkin	ng, New materials in Industry.			
MODULE -2		7 H		
Design Thinking	Process			
Design thinking	process (empathize, analyze, idea & prototype), implementin	g the process in		
driving invention	s, design thinking in social innovations. Tools of design this	inking - person,		
costumer, journey	map, brainstorming, product development			
Activity: Every student presents their idea in three minutes, Every student can present design				
process in the fo	rm of flow diagram or flow chart etc. Every student shoul	d explain about		
product developm	nent			

MODULE-3	8 H
Innovation	

Art of innovation, Difference between innovation and creativity, role of creativity and innovation

in organizations- Creativity to Innovation- Teams for innovation- Measuring the impact and value of creativity.

Activity: Debate on innovation and creativity, Flow and planning from idea to innovation, Debate on value-based innovation.

MODULE-4	8 H

Product Design

Problem formation, introduction to product design, Product strategies, Product value, Product planning, product specifications- Innovation towards product design- Case studies

Activity: Importance of modelling, how to set specifications, Explaining their own product design.

9 H

MODULE-5

Design Thinking in Business Processes

Design Thinking applied in Business & Strategic Innovation, Design Thinking principles that redefine business – Business challenges: Growth, Predictability, Change, Maintaining Relevance, Extreme competition, Standardization. Design thinking to meet corporate needsDesign thinking for Startups- Defining and testing Business Models and Business CasesDeveloping & testing prototypes.

Activity: How to market our own product, About maintenance, Reliability and plan for startup.

	Total hours:	48 HOURS
Online Learning Resources:		
1. <u>https://nptel.ac.in/courses/110/106/110106124/</u>		
2. <u>https://nptel.ac.in/courses/109/104/109104109/</u>		
3. https://swayam.gov.in/nd1_noc19_mg60/preview		
Text Book(s):		
1. Tim Brown, Change by design, Harper Bollins (2009)		
2. Idris Mootee, Design Thinking for Strategic Innovation, 2013, .	John Wiley & So	ns.
Reference Books :		
1. David Lee, Design Thinking in the Classroom, Ulysses press		
2. Shrutin N Shetty, Design the Future, Norton Press		
3. William Lidwell, Universal Principles of Design- Kritinaholden, Jill Butter.		
4. Chesbrough.H, The Era of Open Innovation – 2013		